Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells
نویسندگان
چکیده
Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells.
منابع مشابه
Enhanced optical absorption in organic solar cells using metal nano particles
In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...
متن کاملEnhanced optical absorption in organic solar cells using metal nano particles
In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...
متن کاملQuantum Mechanical Calculations of Photovoltaic and Photoelectronic Properties of Oligoselenophene/Fullerene BHJ Solar Cells
To model the active layer in the hetero-junction solar cells, the C60, C70, PC60BM, PCBDAN fullerenes as acceptor, and (OS)n=1) oligoselenophenes as donor were considered. The (OS)n=14/C60, (OS)n=14/C70, (OS)n=14/PC60BM, and (OS)n=14/PCBDAN blends as a model of the active layer in the BHJ solar cell were chosen, and the optoelectronic properties were studied. The calculated efficiency of these ...
متن کاملSynthesis and Investigation of Photovoltaic Properties of New Organic Dye in Solar Cells Device
In this paper, we designed and synthesized free-metal dyes based on indoline. The proposed dyes were synthesized from phenothiazine as the starting material by standard reactions. The chemical structure of the synthesized dye was confirmed using FT-IR, 1HNMR and DSC techniques. Spectrophotometric measurements of the organic dyes in acetonitrile and on a TiO2 substrate ...
متن کاملThe DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules
The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of th...
متن کامل